Additive inhibition of complement deposition by pneumolysin and PspA facilitates Streptococcus pneumoniae septicemia.

نویسندگان

  • Jose Yuste
  • Marina Botto
  • James C Paton
  • David W Holden
  • Jeremy S Brown
چکیده

Streptococcus pneumoniae is a common cause of septicemia in the immunocompetent host. To establish infection, S. pneumoniae has to overcome host innate immune responses, one component of which is the complement system. Using isogenic bacterial mutant strains and complement-deficient immune naive mice, we show that the S. pneumoniae virulence factor pneumolysin prevents complement deposition on S. pneumoniae, mainly through effects on the classical pathway. In addition, using a double pspA-/ply- mutant strain we demonstrate that pneumolysin and the S. pneumoniae surface protein PspA act in concert to affect both classical and alternative complement pathway activity. As a result, the virulence of the pspA-/ply- strain in models of both systemic and pulmonary infection is greatly attenuated in wild-type mice but not complement deficient mice. The sensitivity of the pspA-/ply- strain to complement was exploited to demonstrate that although early innate immunity to S. pneumoniae during pulmonary infection is partially complement-dependent, the main effect of complement is to prevent spread of S. pneumoniae from the lungs to the blood. These data suggest that inhibition of complement deposition on S. pneumoniae by pneumolysin and PspA is essential for S. pneumoniae to successfully cause septicemia. Targeting mechanisms of complement inhibition could be an effective therapeutic strategy for patients with septicemia due to S. pneumoniae or other bacterial pathogens.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of PspA and antibodies to PspA on activation and deposition of complement on the pneumococcal surface.

Streptococcus pneumoniae infection is a frequent cause of pneumonia, otitis media, meningitis, and septicemia. Pneumococcal surface protein A (PspA) is an important virulence factor on the pathogen surface, and it is known to interfere with complement activation. In this study, flow cytometry was used to study the effects of PspA and antibodies to PspA on the deposition of complement C3 on the ...

متن کامل

Characterization of Protective Immune Responses Induced by Pneumococcal Surface Protein A in Fusion with Pneumolysin Derivatives

Pneumococcal surface protein A (PspA) and Pneumolysin derivatives (Pds) are important vaccine candidates, which can confer protection in different models of pneumococcal infection. Furthermore, the combination of these two proteins was able to increase protection against pneumococcal sepsis in mice. The present study investigated the potential of hybrid proteins generated by genetic fusion of P...

متن کامل

Pneumolysin, PspA, and PspC contribute to pneumococcal evasion of early innate immune responses during bacteremia in mice.

The pneumococcal virulence factors include capsule, PspA, PspC, and Ply. Cytometric analysis demonstrated that the greatest levels of C3 deposition were on a Deltaply PspA(-) PspC(-) mutant. Also, Ply, PspA, and PspC expression resulted in C3 degradation in vitro and in vivo. Finally, blood clearance assays demonstrated that there was enhanced clearance of Deltaply PspA(-) PspC(-) pneumococci c...

متن کامل

Additive attenuation of virulence of Streptococcus pneumoniae by mutation of the genes encoding pneumolysin and other putative pneumococcal virulence proteins.

Although the polysaccharide capsule of Streptococcus pneumoniae has been recognized as a sine qua non of virulence, much recent attention has focused on the role of pneumococcal proteins in pathogenesis, particularly in view of their potential as vaccine antigens. The individual contributions of pneumolysin (Ply), the major neuraminidase (NanA), autolysin (LytA), hyaluronidase (Hyl), pneumococc...

متن کامل

Immunizations with pneumococcal surface protein A and pneumolysin are protective against pneumonia in a murine model of pulmonary infection with Streptococcus pneumoniae.

Intranasal infection of mice with certain strains of capsular group 19 Streptococcus pneumoniae can result in focal pneumonia in the absence of bacteremia. Using this model of murine pneumonia, we demonstrated that immunization with recombinant forms of either pneumococcal surface protein A (PspA) or PdB (a genetically detoxified derivative of pneumolysin) elicited significant protection agains...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of immunology

دوره 175 3  شماره 

صفحات  -

تاریخ انتشار 2005